Non-Isothermal Crystallization Kinetics of Poly (ɛ-Caprolactone) (PCL) and MgO Incorporated PCL Nanofibers

نویسندگان

چکیده

The study delves into the kinetics of non-isothermal crystallization Poly (ɛ-caprolactone) (PCL) and MgO-incorporated PCL nanofibers with varying cooling rates. Differential Scanning Calorimetry (DSC-3) was used to acquire information investigate behavior two types under different rates ranging from 0.5–5 K/min. results show that rate decreases at higher temperatures. Furthermore, parameters were investigated via several mathematical models, including Jeziorny Mo’s models. approach suitable describe nanofibers’ overall process. In addition, Kissinger Friedman methods calculate activation energy bulk-PCL, PCL, MgO-PCL nanofibers. result showed bulk-PCL comparatively lower than investigation plays a crucial role in optimizing manufacturing processes enhancing performance

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Non-Isothermal Crystallization Kinetics of Biodegradable Poly(ethylene adipate)/SiO2 Nanocomposites

Poly(ethylene adipte) and poly(ethylene adipate)/silica nanocomposite (PEAd/SiO2) containing 3 wt. % SiO2  were prepared by an in situ method. The examinations on the non-isothermal crystallization kinetic behavior have been conducted by means of differential scanning calorimeter (DSC). The Avrami, Ozawa, and combined Avrami and Ozawa equations were applied to describe the crystallization kinet...

متن کامل

Nanocalcium-deficient hydroxyapatite–poly (ɛ-caprolactone)–polyethylene glycol–poly (ɛ-caprolactone) composite scaffolds

A bioactive composite of nano calcium-deficient apatite (n-CDAP) with an atom molar ratio of calcium to phosphate (Ca/P) of 1.50 and poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL) was synthesized, and a composite scaffold was fabricated. The composite scaffolds with 40 wt% n-CDAP contained well interconnected macropores around 400 μm, and exhibited a porosity of 7...

متن کامل

Morphology, Nucleation, and Isothermal Crystallization Kinetics of Poly(-caprolactone) Mixed with a Polycarbonate/MWCNTs Masterbatch

In this study, nanocomposites were prepared by melt blending poly (ε-caprolactone) (PCL) with a (polycarbonate (PC)/multi-wall carbon nanotubes (MWCNTs)) masterbatch in a twin-screw extruder. The nanocomposites contained 0.5, 1.0, 2.0, and 4.0 wt % MWCNTs. Even though PCL and PC have been reported to be miscible, our DSC (Differential Scanning Calorimetry), SAXS (Small Angle X-ray Scattering), ...

متن کامل

Non-isothermal Primary Crystallization Kinetics of the Amorphous Fe85.3B11P3Cu0.7 Alloy

In the present research, the primary crystallization kinetics of the amorphous Fe85.3B11P3Cu0.7 alloy was analyzed using non-isothermal DSC measurements. The average and local activation energies, Ea, were determined by different isokinetic and isoconversional methods. The results obtained for activation energy in this research, show that due to the complexity of the primary crystallization pro...

متن کامل

Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications

Polymeric nanofibers are of great interest in biomedical applications, such as tissue engineering, drug delivery and wound healing, due to their ability to mimic and restore the function of natural extracellular matrix (ECM) found in tissues. Electrospinning has been heavily used to fabricate nanofibers because of its reliability and effectiveness. In our research, we fabricated poly(ε-caprolac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Polymers

سال: 2023

ISSN: ['2073-4360']

DOI: https://doi.org/10.3390/polym15143013